机器学习
提前了解
数学
代数
- 变量、系数和函数
- 线性方程式
- 对数和对数方程式
- S 型函数
线性代数
- 张量和张量等级
- 矩阵乘法
统计学
- 均值、中间值、离群值和标准偏差
- 能够读懂直方图
微积分(可选,适合高级主题)
- 导数概念(您不必真正计算导数)
- 梯度或斜率
- 偏导数(与梯度紧密相关)
- 链式法则(带您全面了解用于训练神经网络的反向传播算法)
Python
一门编程语言,如Python
基础知识
- 定义和调用函数:使用位置和关键字参数
- 字典、列表、集合(创建、访问和迭代)
- for 循环:包含多个迭代器变量的 for 循环(例如 for a, b in [(1,2), (3,4)])
- if/else 条件块和条件表达式
- 字符串格式(例如 '%.2f' % 3.14)
- 变量、赋值、基本数据类型(int、float、bool、str)
- pass 语句
中级知识
- 列表推导式
- Lambda 函数
Python 库
一些相关的Python的软件库
Matplotlib(适合数据可视化)
- pyplot 模块
- cm 模块
- gridspec 模块
Seaborn(适合热图)
- heatmap 函数
Pandas(适合数据处理)
- DataFrame 类
NumPy(适合低阶数学运算)
- linspace 函数
- random 函数
- array 函数
- arange 函数
scikit-learn(适合评估指标)
- metrics 模块
{{了解更多 |Google机器学习教程}}
书籍
- 《机器学习实战》
教学资源
- Google:机器学习速成课程节奏紧凑、内容实用的机器学习简介课程。可以中文声音文字,都是Google的AI技术翻译的。偶尔会翻译错误。
- Coursera:吴恩达(Andrew Ng)的机器学习入门课《Machine Learning》 让机器学习初学者能够快速对整个机器学习知识点有比较整体的认识,便于快速入门。