机器学习

机器学习(Machine learning)是人工智能的一个分支。机器学习算法是一类从数据中自动分析获得规律,并利用规律对未知数据进行预测的算法。机器学习已广泛应用于数据挖掘、计算机视觉、自然语言处理等。

简介

时间轴

提前了解

编程语言一般使用Python,简单易学,机器学习相关软件和教程多。可以先学统计学Python其他知识用到再学。

类别 内容
数学 统计学 · 线性代数 · 微积分
编程语言 Python,及相关包:NumPy· Pandas· Matplotlib· scikit-learn· Seaborn


基本概念

名称 描述
数据集
data set
特征
feature
标注
label
训练集
training set
测试集
test set

分类

名称 描述
监督学习
supervised learning
是指使用有标注的数据进行学习建模。常见类型:
分类(classfication):k近邻(k-nearest neighbors,k-NN),决策树(decision tree ),逻辑回归(logistic regression),朴素贝叶斯(naive Bayes classifiers)
回归(regression):线性回归(linear regression)
无监督学习
unsupervised learning
是指使用没有标注的数据进行学习建模。常见类型:
聚类分析(Cluster analysis):k-均值(k-means)
异常检测(anomaly detection)
人工神经网络(Artificial Neural Network):生成对抗网络(Generative Adversarial Network,GAN),自组织映射(SOM)
半监督学习
semi-supervised learning
强化学习
reinforcement learning

资源

相关网站

教程

书籍

  • 《机器学习实战》

相关文章