统计学:修订间差异

无编辑摘要
无编辑摘要
第21行: 第21行:
| 平均数<br \>mean
| 平均数<br \>mean
| 也叫算数平均数,是一组数据的数值之和除以个数。
| 也叫算数平均数,是一组数据的数值之和除以个数。
| 样本平均数:<math>\overline{x}</math> <br \>样本个数:n<br \><br \>总体平均数用希腊字母:<math>\mu</math><br \>总体个数:N<br \>
| 样本平均数:<math>\overline{x}</math> <br \>样本个数:n<br \><br \>总体平均数:<math>\mu</math><br \>总体个数:N<br \>
|<math>\overline{x} = \frac{\sum{x}_{i}}{n} = \tfrac{x_1 + x_2 + x_3 \ldots + x_n}{n} </math> <br \> <math>\mu = \frac{\sum{x}_{i}}{N} = \tfrac{x_1 + x_2 + x_3 \ldots + x_N}{N} </math>
|<math>\overline{x} = \frac{\sum{x}_{i}}{n} = \tfrac{x_1 + x_2 + x_3 \ldots + x_n}{n} </math> <br \><br \>  <math>\mu = \frac{\sum{x}_{i}}{N} = \tfrac{x_1 + x_2 + x_3 \ldots + x_N}{N} </math>
|-
| 加权平均数<br \>weighted mean
| 类似算术平均数,算数平均每个数据的权重都为<math>\frac{1}{n}</math>,但加权平均数会根据每个数据的重要性分配权重。
| 样本平均数:<math>\overline{x}</math> <br \>样本个数:n<br \><br \>总体平均数:<math>\mu</math><br \>总体个数:N<br \>
| 假设一组数据:<math>x_1, x_2, \dots , x_n</math> 权重为<math>w_1, w_2, \dots, w_n</math> <br \> <math>\bar{x} = \frac{ \sum_{i=1}^n w_i x_i}{\sum_{i=1}^n w_i} = \frac{w_1 x_1 + w_2 x_2 + \cdots + w_n x_n}{w_1 + w_2 + \cdots + w_n}</math>
|-
| 几何平均数<br \>geometric mean
| 是n个数据乘积的n次方根。几何平均数比算术平均数更适合用于指数增长和变化的增长值;在商业中,几何平均数的增长率被称为复合年均增长率(CAGR)。
| 样本几何平均数:<math>\overline{x}_g</math> <br \>样本个数:n<br \><br \>总体几何平均数:<math>\mu_g</math><br \>总体个数:N<br \>
| <math>\overline{x}_g  = \sqrt[n]{x_1 x_2 \cdots x_n}=({x_1 x_2 \cdots x_n})^{\frac{1}{n}}</math> <br \><br \>简洁记法:<math>\overline{x}_g = \left(\prod_{i=1}^n x_i\right)^\frac{1}{n}</math>
|-
| 调和平均数<br \>harmonic mean
| 是将所有数值取倒数并求其算术平均数后,再将此算术平均数取倒数。一般是在计算平均速率时使用。
| <math>H</math>
| <math>H = \left(\frac{x_1^{-1} + x_2^{-1}  + ... + x_n^{-1}}{n}\right)^{-1} = \frac{n}{\frac{1}{x_1} + \frac{1}{x_2} + ... + \frac{1}{x_n}} </math> <br \><br \>简记:<math>H = \frac{n}{\sum_{i=1}^n \frac{1}{x_i}}</math>
|-  
|-  
| 中位数<br \>median
| 中位数<br \>median

2021年5月17日 (一) 00:08的版本

统计学是一门有关收集、处理、分析、解释和展示数据的学科。统计分析数据所用的方法大体上可分为两大类:

  • 描述统计(descriptive statistics)是研究如何收集、处理、展示数据的统计学方法。
  • 推断统计(inferential statistics)是研究如何利用样本数据来推断总体特征的统计学方法。

简介

时间轴

数据

描述统计

位置度量

名称 描述 常用表示方法 公式
平均数
mean
也叫算数平均数,是一组数据的数值之和除以个数。 样本平均数:[math]\displaystyle{ \overline{x} }[/math]
样本个数:n

总体平均数:[math]\displaystyle{ \mu }[/math]
总体个数:N
[math]\displaystyle{ \overline{x} = \frac{\sum{x}_{i}}{n} = \tfrac{x_1 + x_2 + x_3 \ldots + x_n}{n} }[/math]

[math]\displaystyle{ \mu = \frac{\sum{x}_{i}}{N} = \tfrac{x_1 + x_2 + x_3 \ldots + x_N}{N} }[/math]
加权平均数
weighted mean
类似算术平均数,算数平均每个数据的权重都为[math]\displaystyle{ \frac{1}{n} }[/math],但加权平均数会根据每个数据的重要性分配权重。 样本平均数:[math]\displaystyle{ \overline{x} }[/math]
样本个数:n

总体平均数:[math]\displaystyle{ \mu }[/math]
总体个数:N
假设一组数据:[math]\displaystyle{ x_1, x_2, \dots , x_n }[/math] 权重为[math]\displaystyle{ w_1, w_2, \dots, w_n }[/math]
[math]\displaystyle{ \bar{x} = \frac{ \sum_{i=1}^n w_i x_i}{\sum_{i=1}^n w_i} = \frac{w_1 x_1 + w_2 x_2 + \cdots + w_n x_n}{w_1 + w_2 + \cdots + w_n} }[/math]
几何平均数
geometric mean
是n个数据乘积的n次方根。几何平均数比算术平均数更适合用于指数增长和变化的增长值;在商业中,几何平均数的增长率被称为复合年均增长率(CAGR)。 样本几何平均数:[math]\displaystyle{ \overline{x}_g }[/math]
样本个数:n

总体几何平均数:[math]\displaystyle{ \mu_g }[/math]
总体个数:N
[math]\displaystyle{ \overline{x}_g = \sqrt[n]{x_1 x_2 \cdots x_n}=({x_1 x_2 \cdots x_n})^{\frac{1}{n}} }[/math]

简洁记法:[math]\displaystyle{ \overline{x}_g = \left(\prod_{i=1}^n x_i\right)^\frac{1}{n} }[/math]
调和平均数
harmonic mean
是将所有数值取倒数并求其算术平均数后,再将此算术平均数取倒数。一般是在计算平均速率时使用。 [math]\displaystyle{ H }[/math] [math]\displaystyle{ H = \left(\frac{x_1^{-1} + x_2^{-1} + ... + x_n^{-1}}{n}\right)^{-1} = \frac{n}{\frac{1}{x_1} + \frac{1}{x_2} + ... + \frac{1}{x_n}} }[/math]

简记:[math]\displaystyle{ H = \frac{n}{\sum_{i=1}^n \frac{1}{x_i}} }[/math]
中位数
median
也叫中值,是一组数据按数值大小排序后,位于正中间的数,如果正中间有2个数,取这2个数的平均值。 [math]\displaystyle{ M_e }[/math]

[math]\displaystyle{ \mathrm{Q}_\frac{1}{2} }[/math]
设一组数据:[math]\displaystyle{ x_1, x_2, \dots , x_n }[/math]。按大小顺序(升序或降序)排列后为:[math]\displaystyle{ x'_1, x'_2, \dots , x'_n }[/math]
[math]\displaystyle{ \mathrm{M_e} = \begin{cases} x'_\frac{n + 1}{2}, & \mbox{n为奇数} \\ \frac{1}{2}( x'_\frac{n}{2} + x'_{\frac{n}{2} + 1}), & \mbox{n为偶数} \end{cases} }[/math]

离散程度

分布形态

图形

概率与概率分布

参数估计

抽样与抽样分布

假设检验

方差分析

回归分析

时间序列分析

非参数统计

指数

资源

相关网站

相关文章

书籍

  • 《商务与经济统计》- 戴维.安德森
  • 《统计学(第三版)》-贾俊平


参考