卡方分布:修订间差异

(创建页面,内容为“卡方分布(chi-square distribution),或写作<math>\chi ^ 2</math>分布,是一种常见的连续型概率分布。<math>\chi</math>是第22个希腊字…”)
 
无编辑摘要
 
(未显示同一用户的2个中间版本)
第3行: 第3行:
==简介==
==简介==
===时间轴===
===时间轴===
==基本==
===定义===
若随机变量<math>X_1、...、X_n</math>相互独立,且都服从标准[[正态分布]],即<math>X_1 \sim N(0,1),...,X_n \sim N(0,1)</math>,则称这些随机变量的平方和Q
{{公式| |<math>Q = \sum_{i=1}^n X_i^2 </math> }}
是服从自由度为的n的<math>\chi ^ 2</math>分布。通常记作<math> Q \sim\ \chi^2(n)</math>或<math> Q \sim\ \chi^2_n</math>。
===概率密度函数===
<math>\chi^2(n)</math>的概率密度函数为:
{{公式|卡方概率密度函数|<math>f_{n}(x)=\left\{\begin{array}{cc}
\frac{1}{2 \Gamma(n / 2)}\left(\frac{x}{2}\right)^{\frac{n}{2}-1} e^{-\frac{x}{2}}, & x>0 \\
0, & x \leq 0
\end{array}\right. </math>||式中,Γ代表Gamma函数。}}
==计算==
==性质==


==卡方检验==
==卡方检验==
==卡方分布表==


==资源==
==资源==
第13行: 第32行:
*[https://zh.wikipedia.org/wiki/卡方分布 维基百科:卡方分布]
*[https://zh.wikipedia.org/wiki/卡方分布 维基百科:卡方分布]
*[https://www.jiqizhixin.com/graph/technologies/af8f95fc-c9f8-4525-911f-1ce70d1fcd8a 机器之心:卡方]
*[https://www.jiqizhixin.com/graph/technologies/af8f95fc-c9f8-4525-911f-1ce70d1fcd8a 机器之心:卡方]
[[分类:统计学]]
[[分类:数据分析]]

2021年6月4日 (五) 04:20的最新版本

卡方分布(chi-square distribution),或写作[math]\displaystyle{ \chi ^ 2 }[/math]分布,是一种常见的连续型概率分布。[math]\displaystyle{ \chi }[/math]是第22个希腊字母,英语名称chi,读音与“开”相同。

简介

时间轴

基本

定义

若随机变量[math]\displaystyle{ X_1、...、X_n }[/math]相互独立,且都服从标准正态分布,即[math]\displaystyle{ X_1 \sim N(0,1),...,X_n \sim N(0,1) }[/math],则称这些随机变量的平方和Q

[math]\displaystyle{ Q = \sum_{i=1}^n X_i^2 }[/math]

是服从自由度为的n的[math]\displaystyle{ \chi ^ 2 }[/math]分布。通常记作[math]\displaystyle{ Q \sim\ \chi^2(n) }[/math][math]\displaystyle{ Q \sim\ \chi^2_n }[/math]

概率密度函数

[math]\displaystyle{ \chi^2(n) }[/math]的概率密度函数为:

卡方概率密度函数 [math]\displaystyle{ f_{n}(x)=\left\{\begin{array}{cc} \frac{1}{2 \Gamma(n / 2)}\left(\frac{x}{2}\right)^{\frac{n}{2}-1} e^{-\frac{x}{2}}, & x\gt 0 \\ 0, & x \leq 0 \end{array}\right. }[/math]
式中,Γ代表Gamma函数。

计算

性质

卡方检验

卡方分布表

资源

相关文章